Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Immunol ; 153: 160-169, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2150304

RESUMEN

Cytokine release syndrome, also called cytokine storm, could cause lung tissue damage, acute respiratory distress syndrome (ARDS) and even death during SARS-CoV-2 infection. However, the underlying mechanisms of cytokine storm still remain unknown. Among these cytokines, the function of TNF-α and type I IFNs especially deserved further investigation. Here, we first found that TNF-α and IFN-ß synergistically induced human airway epithelial cells BEAS-2B death. Mechanistically, the combination of TNF-α and IFN-ß led to the activation of caspase-8 and caspase-3, which initiated BEAS-2B apoptosis. The activated caspase-8 and caspase-3 could further induce the cleavage and activation of gasdermin D (GSDMD) and gasdermin E (GSDME), which finally resulted in pro-inflammatory pyroptosis. The knock-down of caspase-8 and caspase-3 could effectively block the activation of GSDMD and GSDME, and then the death of BEAS-2B induced by TNF-α and IFN-ß. In addition, pan-caspase inhibitor Z-VAD-FMK (ZVAD) and necrosulfonamide (NSA) could inhibit BEAS-2B death induced by TNF-α and IFN-ß. Overall, our work revealed one possible mechanism that cytokine storm causes airway epithelial cells (AECs) damage and ARDS. These results indicated that blocking TNF-α and IFN-ß-mediated AECs death may be a potential target to treat related viral infectious diseases, such as COVID-19.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Apoptosis , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Síndrome de Liberación de Citoquinas , Células Epiteliales/metabolismo , Gasderminas , Piroptosis , SARS-CoV-2/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Interferón beta
2.
Immunity ; 55(3): 382-384, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1747889

RESUMEN

Macrophage activation is essential for effective immunity to infection but can also contribute to disease through incompletely understood mechanisms. In this issue of Immunity, Simpson et al. reveal that death of activated macrophages integrates extrinsic and intrinsic pathways of apoptosis that contribute to damaging host responses.


Asunto(s)
Interferón gamma , Activación de Macrófagos , Apoptosis , Caspasa 8/metabolismo , Muerte Celular , Interferón gamma/metabolismo , Ligandos , Macrófagos/inmunología
3.
Science ; 374(6571): 1076-1080, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1723462

RESUMEN

Inflammatory processes that recruit leukocytes to injured or infected tissues are crucial for tissue repair and the elimination of pathogens. However, excessive or chronic inflammation promotes tissue damage and disease, as in arthritis, atherosclerosis, inflammatory bowel disease, and COVID-19. Intracellular constituents released from dying cells are among the stimuli that trigger proinflammatory gene expression programs in innate immune cells. We explore how programmed cell death mechanisms­apoptosis, necroptosis, and pyroptosis­may contribute to inflammatory disease. We discuss inhibition of cell death as a potential therapeutic strategy, focusing on the targets RIPK1 (receptor interacting serine/threonine kinase 1), NLRP3 (NLR family pyrin domain containing 3), and GSDMD (gasdermin D) as important mediators of lytic cell death. We also consider the potential benefits of limiting membrane rupture rather than cell death by targeting NINJ1.


Asunto(s)
Apoptosis , Inflamación/fisiopatología , Necroptosis , Piroptosis , Animales , Caspasa 8/metabolismo , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Humanos , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Crecimiento Nervioso/antagonistas & inhibidores , Factores de Crecimiento Nervioso/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
4.
Cell Death Differ ; 29(2): 420-438, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1406388

RESUMEN

Inflammatory responses rapidly detect pathogen invasion and mount a regulated reaction. However, dysregulated anti-pathogen immune responses can provoke life-threatening inflammatory pathologies collectively known as cytokine release syndrome (CRS), exemplified by key clinical phenotypes unearthed during the SARS-CoV-2 pandemic. The underlying pathophysiology of CRS remains elusive. We found that FLIP, a protein that controls caspase-8 death pathways, was highly expressed in myeloid cells of COVID-19 lungs. FLIP controlled CRS by fueling a STAT3-dependent inflammatory program. Indeed, constitutive expression of a viral FLIP homolog in myeloid cells triggered a STAT3-linked, progressive, and fatal inflammatory syndrome in mice, characterized by elevated cytokine output, lymphopenia, lung injury, and multiple organ dysfunctions that mimicked human CRS. As STAT3-targeting approaches relieved inflammation, immune disorders, and organ failures in these mice, targeted intervention towards this pathway could suppress the lethal CRS inflammatory state.


Asunto(s)
COVID-19/fisiopatología , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/metabolismo , Inflamación/metabolismo , Factor de Transcripción STAT3/metabolismo , Anciano , Anciano de 80 o más Años , Animales , COVID-19/metabolismo , Caspasa 8/metabolismo , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , SARS-CoV-2/inmunología , Factor de Transcripción STAT3/genética , Transducción de Señal
5.
Cell Rep ; 36(8): 109614, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1370458

RESUMEN

Zoonotic pathogens, such as COVID-19, reside in animal hosts before jumping species to infect humans. The Carnivora, like mink, carry many zoonoses, yet how diversity in host immune genes across species affect pathogen carriage is poorly understood. Here, we describe a progressive evolutionary downregulation of pathogen-sensing inflammasome pathways in Carnivora. This includes the loss of nucleotide-oligomerization domain leucine-rich repeat receptors (NLRs), acquisition of a unique caspase-1/-4 effector fusion protein that processes gasdermin D pore formation without inducing rapid lytic cell death, and the formation of a caspase-8 containing inflammasome that inefficiently processes interleukin-1ß. Inflammasomes regulate gut immunity, but the carnivorous diet has antimicrobial properties that could compensate for the loss of these immune pathways. We speculate that the consequences of systemic inflammasome downregulation, however, can impair host sensing of specific pathogens such that they can reside undetected in the Carnivora.


Asunto(s)
Carnívoros/metabolismo , Evolución Molecular , Inflamasomas/metabolismo , Zoonosis/patología , Animales , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasa 8/metabolismo , Caspasas Iniciadoras/genética , Caspasas Iniciadoras/metabolismo , Muerte Celular , Línea Celular , Humanos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella typhi/patogenicidad , Zoonosis/inmunología , Zoonosis/parasitología
6.
J Virol ; 95(9)2021 04 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1180915

RESUMEN

Porcine epidemic diarrhea virus (PEDV) is an α-coronavirus causing severe diarrhea and high mortality rates in suckling piglets and posing significant economic impact. PEDV replication is completed and results in a large amount of RNA in the cytoplasm. Stress granules (SGs) are dynamic cytosolic RNA granules formed under various stress conditions, including viral infections. Several previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. However, the underlying mechanisms are poorly understood. This study aimed to delineate the molecular mechanisms regulating the SG response to PEDV infection. SG formation is induced early during PEDV infection, but as infection proceeds, this ability is lost and SGs disappear at late stages of infection (>18 h postinfection). PEDV infection resulted in the cleavage of Ras-GTPase-activating protein-binding protein 1 (G3BP1) mediated by caspase-8. Using mutational analysis, the PEDV-induced cleavage site within G3BP1 was identified, which differed from the 3C protease cleavage site previously identified. Furthermore, G3BP1 cleavage by caspase-8 at D168 and D169 was confirmed in vitro as well as in vivo The overexpression of cleavage-resistant G3BP1 conferred persistent SG formation and suppression of viral replication. Additionally, the knockdown of endogenous G3BP1 abolished SG formation and potentiated viral replication. Taken together, these data provide new insights into novel strategies in which PEDV limits the host stress response and antiviral responses and indicate that caspase-8-mediated G3BP1 cleavage is important in the failure of host defense against PEDV infection.IMPORTANCE Coronaviruses (CoVs) are drawing extensive attention again since the outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019. CoVs are prone to variation and own the transmission capability by crossing the species barrier resulting in reemergence. How CoVs manipulate the antiviral responses of their hosts needs to be explored. Overall, the study provides new insight into how porcine epidemic diarrhea virus (PEDV) impaired SG assembly by targeting G3BP1 via the host proteinase caspase-8. These findings enhanced the understanding of PEDV infection and might help identify new antiviral targets that could inhibit viral replication and limit the pathogenesis of PEDV.


Asunto(s)
Caspasa 8/metabolismo , Infecciones por Coronavirus/metabolismo , Gránulos Citoplasmáticos/metabolismo , Virus de la Diarrea Epidémica Porcina/fisiología , Proteolisis , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Replicación Viral , Animales , Caspasa 8/genética , Chlorocebus aethiops , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/patología , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/virología , Células HEK293 , Humanos , Proteínas con Motivos de Reconocimiento de ARN/genética , Porcinos , Células Vero
7.
J Biol Chem ; 295(41): 14040-14052, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: covidwho-704089

RESUMEN

Coronaviruses have caused several zoonotic infections in the past two decades, leading to significant morbidity and mortality globally. Balanced regulation of cell death and inflammatory immune responses is essential to promote protection against coronavirus infection; however, the underlying mechanisms that control these processes remain to be resolved. Here we demonstrate that infection with the murine coronavirus mouse hepatitis virus (MHV) activated the NLRP3 inflammasome and inflammatory cell death in the form of PANoptosis. Deleting NLRP3 inflammasome components or the downstream cell death executioner gasdermin D (GSDMD) led to an initial reduction in cell death followed by a robust increase in the incidence of caspase-8- and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated inflammatory cell deathafter coronavirus infection. Additionally, loss of GSDMD promoted robust NLRP3 inflammasome activation. Moreover, the amounts of some cytokines released during coronavirus infection were significantly altered in the absence of GSDMD. Altogether, our findings show that inflammatory cell death, PANoptosis, is induced by coronavirus infection and that impaired NLRP3 inflammasome function or pyroptosis can lead to negative consequences for the host. These findings may have important implications for studies of coronavirus-induced disease.


Asunto(s)
Caspasa 8/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Células Cultivadas , Coronavirus/fisiología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Citocinas/metabolismo , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Necroptosis , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA